The siderophore yersiniabactin binds copper to protect pathogens during infection
نویسندگان
چکیده
Bacterial pathogens secrete chemically diverse iron chelators called siderophores, which may exert additional distinctive functions in vivo. Among these, uropathogenic Escherichia coli often coexpress the virulence-associated siderophore yersiniabactin (Ybt) with catecholate siderophores. Here we used a new MS screening approach to reveal that Ybt is also a physiologically favorable Cu(II) ligand. Direct MS detection of the resulting Cu(II)-Ybt complex in mice and humans with E. coli urinary tract infections demonstrates copper binding to be a physiologically relevant in vivo interaction during infection. Ybt expression corresponded to higher copper resistance among human urinary tract isolates, suggesting a protective role for this interaction. Chemical and genetic characterization showed that Ybt helps bacteria resist copper toxicity by sequestering host-derived Cu(II) and preventing its catechol-mediated reduction to Cu(I). Together, these studies reveal a new virulence-associated function for Ybt that is distinct from iron binding.
منابع مشابه
Microbial Copper-binding Siderophores at the Host-Pathogen Interface.
Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity...
متن کاملYersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection.
Iron acquisition systems are essential for the in vivo growth of bacterial pathogens. Despite the epidemiological importance of Klebsiella pneumoniae, few experiments have examined the importance of siderophores in the pathogenesis of this species. A previously reported signature-tagged mutagenesis screen identified an attenuated strain that featured an insertional disruption in ybtQ, which enc...
متن کاملCupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic
Many Gram-negative bacteria interact with extracellular metal ions by expressing one or more siderophore types. Among these, the virulence-associated siderophore yersiniabactin (Ybt) is an avid copper chelator, forming stable cupric (Cu(II)-Ybt) complexes that are detectable in infected patients. Here we show that Ybt-expressing E. coli are protected from intracellular killing within copper-rep...
متن کاملMucosal Lipocalin 2 Has Pro-Inflammatory and Iron-Sequestering Effects in Response to Bacterial Enterobactin
Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriacea...
متن کاملEnterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria.
Escherichia coli and other Enterobacteriaceae are among the most common pathogens of the human urinary tract. Among the genetic gains of function associated with urinary E. coli isolates is the Yersinia high pathogenicity island (HPI), which directs the biosynthesis of yersiniabactin (Ybt), a virulence-associated metallophore. Using a metabolomics approach, we found that E. coli and other Enter...
متن کامل